Exonuclease processivity of archaeal replicative DNA polymerase in association with PCNA is expedited by mismatches in DNA

نویسندگان

  • Takuya Yoda
  • Maiko Tanabe
  • Toshiyuki Tsuji
  • Takao Yoda
  • Sonoko Ishino
  • Tsuyoshi Shirai
  • Yoshizumi Ishino
  • Haruko Takeyama
  • Hirokazu Nishida
چکیده

Family B DNA polymerases comprise polymerase and 3' ->5' exonuclease domains, and detect a mismatch in a newly synthesized strand to remove it in cooperation with Proliferating cell nuclear antigen (PCNA), which encircles the DNA to provide a molecular platform for efficient protein-protein and protein-DNA interactions during DNA replication and repair. Once the repair is completed, the enzyme must stop the exonucleolytic process and switch to the polymerase mode. However, the cue to stop the degradation is unclear. We constructed several PCNA mutants and found that the exonuclease reaction was enhanced in the mutants lacking the conserved basic patch, located on the inside surface of PCNA. These mutants may mimic the Pol/PCNA complex processing the mismatched DNA, in which PCNA cannot interact rigidly with the irregularly distributed phosphate groups outside the dsDNA. Indeed, the exonuclease reaction with the wild type PCNA was facilitated by mismatched DNA substrates. PCNA may suppress the exonuclease reaction after the removal of the mismatched nucleotide. PCNA seems to act as a "brake" that stops the exonuclease mode of the DNA polymerase after the removal of a mismatched nucleotide from the substrate DNA, for the prompt switch to the DNA polymerase mode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural determinant for switching between the polymerase and exonuclease modes in the PCNA-replicative DNA polymerase complex.

Proliferating cell nuclear antigen (PCNA) is responsible for the processivity of DNA polymerase. We determined the crystal structure of Pyrococcus furiosus DNA polymerase (PfuPol) complexed with the cognate monomeric PCNA, which allowed us to construct a convincing model of the polymerase-PCNA ring interaction, with unprecedented configurations of the two molecules. Electron microscopic analyse...

متن کامل

DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs.

Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro....

متن کامل

Fidelity of eucaryotic DNA polymerase delta holoenzyme from Schizosaccharomyces pombe.

The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RF...

متن کامل

p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex.

Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an appare...

متن کامل

The sliding clamp of DNA polymerase III holoenzyme encircles DNA.

DNA polymerases that duplicate chromosomes are remarkably processive multiprotein machines. These replicative polymerases remain in continuous association with the DNA over tens to hundreds of kilobases. What is the chemical basis of their strong grip to the template? The mystery behind the high processivity of the replicative polymerase of the Escherichia coli chromosome, DNA polymerase III ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017